If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-x^2-9+20=0
We add all the numbers together, and all the variables
-1x^2+11=0
a = -1; b = 0; c = +11;
Δ = b2-4ac
Δ = 02-4·(-1)·11
Δ = 44
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{44}=\sqrt{4*11}=\sqrt{4}*\sqrt{11}=2\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{11}}{2*-1}=\frac{0-2\sqrt{11}}{-2} =-\frac{2\sqrt{11}}{-2} =-\frac{\sqrt{11}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{11}}{2*-1}=\frac{0+2\sqrt{11}}{-2} =\frac{2\sqrt{11}}{-2} =\frac{\sqrt{11}}{-1} $
| Xx.1775=600 | | -5x-8=4+x | | 20×x=4-6×x | | 3(3x-1/2x+3)-2(2x-3/3x-1)=5 | | (n)=4 | | 5(p+3)=15+5p | | -4v+v=0 | | 1/3×3=n | | 10.1x-1.6+44=-7 | | 4n+6+n=6+5n | | -z+3=1 | | 3x/4+2.05=2x | | x^2(x^2+4x+4)=0 | | 10x-24x=2x | | -z+3=4 | | -2(2x-3)=3(×+1)+10 | | (6-y)^2=64 | | p+18=p(p-2) | | 5s^2+24s=5 | | 49x^2-63x=0 | | 80/x=0.8 | | -6(x-3)-26=4 | | 49x^2-62x=0 | | 5=w/2.3 | | 6n^2+6n-14=0 | | 5b–12=18 | | 5-(x/2)=20 | | 2(3)^x+5=45 | | 2(5)^x-6=24 | | 53x+8=252x | | (x+7)/(x+4)=0 | | 5x/4+1/8(x+2)=3 |